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Introduction 

Skateboarding is a sport pursued by people all around the world, it involves riding on a board 

with four wheels, and performing complex tricks which involve coordination, balance and 

creativity of the skater. With the limitless possibilities of tricks able to be performed, 

skateboarding encapsulates skill sets of all levels, and the highest level being within competition 

skateboarding, with skateboarding’s debut in the 2020 Tokyo Olympics. Evaluation of tricks is 

purely subjective, making it open to bias and imprecise scoring. Under rapid movement, it 

becomes difficult to identify what trick is being performed. The Head Judge for Skatepark of 

Tampa & Board pointed to the many difficulties in providing a judgment in a skateboarding 

event (Pappalardo, 2014). My research question proposes the idea of using support vector 

machines (SVM) and K- nearest neighbors (KNN) to perform data classification upon gyroscope 

and accelerometer data using an Inertial Measurement Unit (IMU). The investigation aims to 

detect and classify what trick a skateboarder performs, with the objective of this paper hoping to 

facilitate skateboarding competition judging, where accuracy and execution time of detecting 

tricks is extremely important. I will be comparing different data classification algorithms by its 

accuracy and prediction speed.  

 

Background Information 

Machine Learning Classification Algorithms 

There are two types of machine learning algorithms, supervised and unsupervised. The main 

difference between them is supervised algorithm is trained upon labeled data, and unsupervised 

is trained upon unlabeled data. For our cases of classification, we must use labeled data, eg. the 
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name of the trick, performed to train our machine learning model. A classification algorithm is a 

type of supervised machine learning technique used to identify the category of new observations 

based upon old training observations. A trained model can be used to identify the class of a given 

dataset and output it correspondingly. Classification algorithms are used in many real life 

situations, some of them being:  

 

● Character recognition 

● Email spam detection 

● Biometric identification (such as identifying cancerous tumors cells) 

 

There are many classification algorithms. This paper will focus mainly on K-nearest neighbors 

and support vector machines 

 

K-Nearest Neighbors 

K-Nearest neighbor (KNN), is one of the simplest and fundamental supervised machine learning 

algorithms. Each skateboarding trick has its own unique data pattern. Selected for its ease of use, 

KNNs classify new skateboarding data by comparing its pattern with similar pre-classified 

patterns. In KNNs, data points are mapped onto an n-dimensional plane, with the axis being 

different features (an individual measurable property of the data), and new data points are 

classified by their proximity to neighboring data points. The algorithm does this by calculating 

the distance between each data point. This is typically done by using metrics such as the 

Euclidean distance. 
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KNN classifies data with a majority voting system, selecting the majority vote of K-nearest 

neighbors. We usually select odd numbers of K as a rule of thumb, this is to avoid ties in voting 

(Varghese, 2018).  

 

Fig. 1 illustrates the process of KNNs. With class A being yellow and class B being blue, every 

observation is plotted onto a 2-dimensional plane in this case, with Feature X and Feature Y as 

its axis. With a new observation plotted (star), the distance between the point and all other points 

are calculated. The most frequent class of its K closest neighbors will be used to classify the new 

point. In this case, if K = 3, the data will be classified as class B (blue). If K = 6, the data will be 

classified as class A (yellow). 

 
(Fig. 1: KNN voting system) 
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For a given data point x and its neighbor y, the Euclidean distance can be calculated with the 

formula: 

 𝑑(𝑥,  𝑦) =  
𝑖 = 1

𝑛

∑ (𝑥
𝑖

− 𝑦
𝑖
)2

 

Where  are two points in Euclidean n-space 𝑥,  𝑦

 ,  are Euclidean vectors 𝑥
𝑖

𝑦
𝑖

 is the n-space or dimension 𝑛

 

With the calculation of distance between all neighbors, the data point will be labeled with the 

most frequent class amongst its k-nearest neighbors. For our skateboarding case, each point will 

represent our IMU value measured, and each feature will be a given time frame. Each point will 

have its corresponding label, which is the trick performed. 

 

In the context of skateboarding data, a graph of two IMU observations is plotted on a 2 

dimensional scatterplot at two given time frames as its axis. The nearest neighbors of a point will 

represent the closest data points of tricks which have similar magnitude of acceleration or 

orientation at the two given time frames. By comparing a point with its neighboring points, it can 

be classified with the most commonly appearing class in its neighborhood.  
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Support Vector Machines 

Support Vector Machine (SVM) is a type of supervised machine learning algorithm used for 

regression, outlier detection and, for our case, classification. SVM is selected for its complexity, 

its ability to find complex relationships in a wide range of situations. It does this by finding the 

optimal hyperplane, or maximum marginal hyperplane, which maximizes the margin between 

two classes of data points in a high dimensional space. This hyperplane separates two classes of 

data points, and can classify new data points by analyzing its location relative to the hyperplane.  

 

Linear SVM 

 

(Fig. 2: Illustration of a linear hyperplane) 
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As observed in Fig 2. The SVM will find the optimal hyperplane, placing it between two classes, 

blue and green. New observations will be classified according to its position relative to the 

hyperplane, with observations on the left of the hyperplane classified as green and observations 

on right classified as blue. 

 

Quadratic SVM 

However, sometimes data may not be linearly separable. To get over this problem, SVMs will 

transform our data into a higher dimensional space.  

 

By mapping the data into a higher dimensional space, linear separation can be performed. This is 

done by using kernel functions. As high dimension data is hard to visualize, let’s start off with 

one dimensional data. Take the following set of data (Fig. 3), which is not linearly separable but 

able to be separated by a quadratic function. 

 
(Fig. 3: Quadratically separable hyperplane) 

 

If we map  the data becomes linearly separable  ϕ(𝑥) =  𝑥² 
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(Fig. 4: Quadratic transformation applied) 

 

Cubic SVM 

Similarity, data represented in fig 5. shows a non linearly separable dataset. However, when a 

cubic transformation is applied, the data becomes separable. 

 

(Fig. 5: cubic separable hyperplane) 
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(Fig. 6: Cubic transformation applied) 

 

SVM kernel functions are used to transform data points into a higher-dimensional space. 

Depending on the characteristics of the data, different kernel functions may work better, making 

it easier to find a hyperplane to separate different classes. Multi-dimensional data can be 

processed through what’s called the “kernel trick”. This allows for SVMs and other 

machine-learning algorithms to operate in high-dimensional feature space without explicitly 

computing the coordinates of data in that space. 
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Methodology 

The investigation is conducted in several steps: 

1) Data collection of gyroscopic values of 5 different skateboarding tricks, of those 

including:  

- Ollie 

- Kickflip 

- Pop shuv 

- Frontside 180 

- Backside 180 

2) Data is converted into a compatible format and processed through an EMA filter. This is 

done to smoothen out results and outliers to provide a more accurate comparison. 

3) The data will then be used to train the machine learning model, both SVM and KNN 

4) Cross validation is used in a 4:1 ratio of training and testing data. 20% of the data will be 

kept aside from training to be used to test the accuracy and prediction speed of the 

produced model.  

5) Evaluation of results and effectiveness  

 
Trick selection 

5 basic tricks were selected to train the SVM, those including the ollie, frontside 180, backside 

180, pop shuvit and kickflip. These tricks were selected on the basis of ease of performance, 

being fundamental skateboarding tricks (Nicholson, 2021), and their own distinctive 

characteristics (Table 1). 
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(Fig 7. Axes of data presented on skateboard) 
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Name of trick Change in data 

Ollie Pitch axis fluctuation 

Frontside 180 Yaw axis -180 degree turn, small pitch axis 

fluctuation 

Backside 180 Yaw axis 180 degree turn, small pitch axis 

fluctuation 

Pop shuvit Yaw axis 180 degree turn, large pitch axis 

fluctuation 

Kickflip  Roll axis 360 degree turn, large pitch axis 

fluctuation 

(Table 1: Trick information) 

Choice of programming language 

The language used to write the data processing algorithm is MATLAB’s built in language. 

MATLAB is a high-level programming language which allows for matrix manipulation. This 

makes data processing of IMU signals more simple. Apart from that advantage, the main reason 

for this selection is MATLAB’s built in application, Classification Learner. This application 

allows for automated training of supervised machine learning algorithms and to access and 

compare different classifiers.  
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(Fig. 8: MatLab technical flowchart (MatLab, 2023)) 

 

Variables 

In the context of supporting judging in skateboarding contests, two variables are extremely 

important for success. First, in order to reliably classify skateboarding tricks, accuracy of the 

model must be high. Second, prediction speed is also extremely important. Skateboarders in 

contests in real-time often perform tricks in quick succession, and judges also need to quickly 

keep up with the tricks performed.  

 

Model performance will be compared based on two measures: 

- Accuracy (Validation) 

- Prediction speed 

The software will provide both results directly after model validation.  

 

Some factors are also kept constant to ensure a suitable comparison between models. (Table 2) 
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Control Variables Value Function Affect 

Number of 

observations per trick 

150 observations for 

20 times performed 

 

3000 total 

observations 

Used as input data to 

train models 

Accuracy, prediction 

speed  

Processor GPU and 

RAM 

M2 Macbook air 

2022 

Used to train and 

compute model 

algorithms 

prediction speed  

Training and testing 

data 

80% Training, 20% 

Testing 

Data input for model 

training 

Accuracy 

MatLab version MatLab r2021b Application used to 

train and test model 

Accuracy, prediction 

speed  

Data collection 

hardware 

MPU9250 gyroscope Used for data 

collection 

Accuracy 

EMA weightage 0.95 Used to process data 

for better accuracy 

Accuracy 

(Table 2: Control variables) 
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Hardware 

         
(Fig. 9: Prototype)  

 
The initial design was implemented with  

● mpu9250 gyroscope  

● sampling rate of 1000Hz  

● wireless transmitter  

● 4 AAA batteries.  

 

General Problems  

● Bulky and heavy, affecting skater’s performance  

● Falls off when a trick is being performed  

● Gyroscope not properly attached (using tape) 

● shakes alot when a trick is being performed  
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Final design: 

 

The final innovation is a small contraption built using a 3d printed box containing a mpu9250 

gyroscope attached to an esp32 microcontroller with wifi transmission. It is connected to a single 

small rechargeable 3.7V 230 mAH battery. 

 

It is a significantly smaller contraption as compared to the prototype. Based on the flaws 

observed from the prototype testing, screw holes were also fitted for the need to mount the 

device onto the skateboard more securely if needed. 

 

 

 

 

 

 

 

 

 

 

(Fig. 10: Device attached to a skateboard)                               (Fig. 11: 3D model of gyroscope) 
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(Fig. 12: ESP32 microcontroller with mpu9250 attached)                (Fig. 13: Hardware device) 

 

Data collection 

Using the onboard WiFi transmitter, collected data samples from the gyroscope of tricks 

performed are sent to computer software. The mpu9250 gyroscope is 6 DoF (degrees of 

freedom), allowing me to have access to the X, Y and Z axis acceleration and also the roll pitch 

and yaw angles of the gyroscope. Over 250000 observations were collected in total. 
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 (Fig. 14: Skateboarder performing data collection) 

 

 

Data processing 

Collected data must be reformatted for MatLab’s Classification Learner application, where the 

models will be trained. MatLab’s Classification Learner requires each vector of data to be of 

equal size. We do this by setting a threshold value on the Z axis acceleration, then taking a 

boundary of readings whenever the threshold is surpassed. For our case, we will take a total of 

150 observations for each trick performed to encapsulate the entirety of the trick as close as 

possible (Fig. 15). With 5 tricks performed 20 times each, a total of 15000 observations are used 

for model training. The data is then normalized, scaling the data between -1 and 1 using 

MatLab’s minmax function. This is done to properly scale the data so that the magnitude of 

acceleration is considered. This is important to consider tricks performed at an incline, where the 

magnitude of the Z axis acceleration may be less than tricks performed on a flat horizontal 
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ground. By scaling the data the performance improves so a better comparison of the machine 

learning algorithms can be compared.  

 
(Fig 15. Two sets of observations of Z axis acceleration on an ollie 

Vertical axis - Z axis acceleration 

Horizontal axis - observation number ) 

 

Analyzing the collected data signals, it is evident that a lot of noise is present (Fig 15). This 

essentially means that the data samples collected are distorted and corrupted. This can be 

observed by the small irregular fluctuations of data and the frequency of outlier data comparing 

the two performances. Noise can result in reduced accuracy for the machine learning model. 

Hence, data processing methods must be employed to filter out noise, remove outliers and 

smoothen out the data. For the purposes of this paper, an exponential weighted average (EMA) 

filter is used. EMA is an infinite impulse response filter, meaning that it filters data values based 

on all previous inputs. It takes a weighted contribution of previous inputs to output a new value, 
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with this weightage exponentially decreasing with time. This means that the data signal may 

never reach its true value, but will converge to it indefinitely. This will help remove the 

fluctuating spikes in our data illustrated in fig. 15, overall producing a much smoother output 

filtering out noise (Fig. 16). 

  
(Fig. 16: Same two sets of observations of Z axis acceleration on an ollie post processing 

Vertical axis - Z axis acceleration 

Horizontal axis - observation number ) 

 

The equation for an EMA filter is: 

 𝑦[𝑖] = α⋅𝑥[𝑖] + (1 − α)⋅𝑦[𝑖 − 1]

Where: 

y is the output 
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x is the input 

α is a constant between 0 and 1 

[i] is the sample number 

 

The constant α will determine the aggressiveness of the filter (illustrated in fig. 17),   

 

 

 

 

 

 

 

 

 
(Fig. 17: α = 0.1 (left), α = 0.9 (right)) 

 

α → 0: more aggressive filtering 

α = 0: output will be constant and not change at all 

α → 1: less aggressive filtering 

α → 1: no change between input and output value 

(Hunter, 2014) 
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Cross validation 

Before training the machine learning models, a portion of the total data must be set aside for 

validation purposes. This testing data is then used to test the accuracy and prediction speed of the 

trained models. However, the portion selected as training and testing data will affect the 

performance of the model. To decide which portion of the data is selected, cross validation is 

used. 

 

The best data used to train the model is determined by cross validation. In a 4:1 ratio of training 

to testing data, the selection of the 80% of data used to train and 20% to test will differ the 

accuracy of the model. To make this selection, k-fold cross validation divides the data into k 

random sets of observations, and takes one set to test and the rest to train the machine learning 

model. This process is then repeated with every set to obtain the best performing set of data used 

to train the model.  

 

 

 

 

Feature selection 

The features selected for training the different models are simply the IMU signals of the trick at a 

given time frame. 150 signals are retrieved per trick performance, each used as a separate feature 

for model training. With 5 tricks each performed 20 times, each feature will contain 100 

observations. 
 
 
 
 
 

21 



 

  

It should be noted that we will only be using Z axis acceleration for model training. This is 

because every trick will have at least a substantial effect on the Z axis acceleration, with the 

largest fluctuations in value. Hence, Z axis acceleration will be the most optimal axis to use to 

train the machine learning models for comparison.  

 

Hyperparameters 

Hyperparameter tuning is an essential part of training machine learning models. Models will be 

trained with different parameters in order to find the best performing model. 

 

For SVMs, the parameter which will be changed is the kernel function. The kernel function has 

the highest impact on the model’s performance, and other parameters are used to fine tune the 

model. Hence, to gauge model performance overall, we will keep the other parameters as control 

variables and only change the kernel function. This will include three models: linear, quadratic 

and cubic kernel function.  

 

For KNNs, the parameter adjusted will be the value of K, the number of nearest neighbors. 

Similarly, the value of K holds the most significant impact on the model and other parameters 

will be kept as control variables. For this paper, K = 1, 3 and 5 is selected as the parameters to be 

tested. 
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Hypothesis 

SVM is said to be better at taking care of outliers than KNN (Varghese, 2020). This is significant 

as rapid movements of skateboarding may lead to many outliers in data, and even after signal 

processing, could result in a significant impact in accuracy. In terms of prediction speed, SVM 

kernel methods require additional computation time when compared to KNN’s with a smaller 

dataset. However, on larger datasets, KNN’s will suffer from increased prediction time due to the 

large amounts of distance calculations it needs to perform. (Anuuz Soni, 2020). Hence, in terms 

of speed, I hypothesize that SVM will outperform KNNs. With 15000 observations, the dataset 

size is large. Hence, It could be hypothesized with our data set that KNN’s will perform slower 

than SVM due to the larger time needed to calculate the distances between each point. 

 

Varghese (2020) hypothesized KNN to outperform SVM when the number of training data 

exceeded the number of features. This hypothesis holds true in Palaniappan (2014) paper, which 

contained a larger set of training data than features, being 68 recordings and 13 features. 

Palaniappan’s experiment resulted in a 100% highest accuracy for KNN but only a 96.13% 

highest accuracy for SVMs. Similarly, Bouteldja’s (2020) comparison between SVM and KNN 

also contained a larger data set of training data than features. Again, KNN proved superior, 

performing with the best accuracy at 77.28% and SVM at a lower 75.14%.  

 

However, I believe Varghese's hypothesis to not hold true for my case. Let’s consider two 

random observations for reference. 
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(Fig. 18: two randomly selected observations of data points 

Vertical axis - 89th Z axis acceleration value 

Horizontal axis - 41st Z axis acceleration value) 

  

The above figures depict two, randomly picked, observations of Z axis acceleration with the 

vertical axis being observation 89 and horizontal axis being observation 41. A pattern can be 

observed here, with much of the values being clustered together in straight lines. For this case, 

points A and B (Fig. 19) are example points which result in misclassification for K = 3, with A 

being predicted as blue instead of purple and B predicted as blue instead of green.  
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(Fig. 19: KNN data points) 

 
An SVM will produce a decision boundary for separating values. With these features, a linear 

SVM will probably work the best. A potential linear decision boundary is illustrated in fig. 20. 

Data on the left or right of the decision boundary will be classified accordingly. The linear 

hyperplane illustrates zero misclassification, with every observation being correctly classified. 

Hence, in this case specifically, SVMs will outperform KNN in terms of accuracy.  
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(Fig. 20: Potential SVM linear hyperplane) 

 

Let us select another case, observation 30 and 127, selected randomly for reference. Upon first 

glance, the observations are grouped together in radical clusters, and thus KNNs will perform 

better due to its closest neighbors being calculated radially.  
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(Fig. 21: two randomly selected observations of data points 

Vertical axis - 30th Z axis acceleration value 

Horizontal axis - 127th Z axis acceleration value) 

 
(Fig. 22: potential points of misclassification by KNN) 
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(Fig. 23: Potential linear hyperplane) 

 

 

Upon further inspection, even a linear hyperplane will classify the data points with a higher 

accuracy. With a potential hyperplane drawn, only 3 points are potentially misclassified, A B and 

C (Fig. 23). However, KNN contains more than 3 points potentially misclassified, A B C and D 

(Fig. 22).  

 

In both cases selected, SVM tends to outperform KNN in terms of accuracy. Hence, I believe 

Varghese’s (Varghese, 2020) hypothesis to be false for my case. My analysis suggests that SVM 

will out perform KNN despite having more training data than labels, going against Varghese’s 

hypothesis, and the performance evaluation of these two models may have nothing to do with the 

number of classes or labels at all. Instead, I believe that accuracy of models is more significantly 

impacted by the nature of training data, and for my case, SVM will outperform KNN.  
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Results 

Performance evaluation 

The accuracy of outputs can be visualized on a confusion matrix. It is one of the simplest and 

straightforward measures of performance evaluation (Flach, 2019). The confusion matrix is read 

corresponding to its two axes, the true class and predicted class. True class represents the 

category which the data belongs to, and predicted class is the category the model classifies the 

data to using the testing data provided. The accuracy of the model is evaluated by taking the 

percentage of correct observations. Figures 24 to 29 depict the confusion matrix of Z axis 

acceleration data classification. 

 

Confusion Matrix of KNN: 

  
(Fig. 24: Confusion matrix KNN (K = 1))  
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(Fig. 25: Confusion matrix KNN (K = 3)) 

 
 

 
(Fig. 26: Confusion matrix KNN (K = 5)) 
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KNN K = 1 K = 3 K = 5 

Accuracy (Validation) 96.0% 93.0% 94.0% 

Prediction speed ~1700 obs/sec ~2300 obs/sec ~2400 obs/sec 

(Table 3: Performance of KNN) 

Discussion: 

All three KNN models have above a 90% success rate, with the highest accuracy being 

parameter K = 1 with 96.0%. However, it is the slowest performing model, only calculating 

~1700 observations per second. The fastest performing model is where K = 5, with a lower 

94.0% accuracy but ~2400 observations per second.  

Confusion Matrix of SVM: 
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(Fig 27. Confusion matrix linear SVM)          
 

 
(Fig 28. Confusion matrix quadratic SVM) 

 
 

 
(Fig 29. Confusion matrix cubic SVM) 
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 Linear SVM Quadratic SVM Cubic SVM 

Accuracy (Validation) 100.0% 100.0% 100.0% 

Prediction speed ~3200 obs/sec ~3000 obs/sec ~3100 obs/sec 

(Table 4: performance of SVM) 

 

Surprisingly, all three models achieved a perfect accuracy of 100.0% on the Z axis angular 

acceleration data. The best performing model is a linear SVM, with the highest prediction speed 

of ~3200 observations per second. To get a rough sense on how fast that is, every trick contains 

150 observations and the model will classify the trick in only 0.05 seconds.  

 

Conclusion 

The incorporation of machine learning for the classification of skateboarding tricks proves to be 

successful. With only using the Z axis angular acceleration, the most accurate, and also the 

fastest, model has a perfect accuracy in the classification of tricks.  

 

Comparing the two algorithms, SVM is superior to KNN in terms of both accuracy and speed. 

The highest accuracy for SVM is 100% and a speed of ~3200 obs/sec while KNN only has a 

highest accuracy of 96% and highest speed of ~2400 obs/sec. This leaves SVMs the obvious 

choice for classification of skateboarding tricks.  
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I originally hypothesized that SVM will outperform KNN in terms of prediction speed due to the 

large amount of calculations needed in a large data set. This holds true as every SVM kernel 

contains a higher prediction speed compared to that of KNN’s. I additionally hypothesized that 

SVMs will outperform KNN in terms of accuracy as well, and was also proven to be correct. 

 

Furthermore, Varghese’s hypothesis that SVM outperforms KNN when the number of features 

exceeds the number of training data (Varghese 2020) proves to be incorrect. Despite the number 

of features (150) exceeding the number of training data (15000), SVM still obtained a higher 

accuracy than KNN. Thus, I theorize that performance between SVM and KNN is more based 

upon the shape of the data itself, whether there are many outliers or whether some classes 

overlap each other.  

 

Evaluation of method and extension & limitations 

For the purposes of comparison, analysis focused solely on Z axis acceleration while the IMU 

consisted of 5 other unused features: Y axis acceleration, X axis acceleration, roll, pitch and yaw. 

This is used because every skateboarding trick has a considerable effect on the Z axis 

acceleration. Hence, it is most suitable to be used for model training. Getting the highest 

accuracy, however, can be done by combining all 6 of the IMU signals using sensor fusion 

algorithms (Udacity Team, 2020) and will result in a much higher accuracy for both KNN and 

SVM models. Nevertheless, this may result in the accuracy of classification being too high, 

making it hard to draw conclusions between the two machine learning models.  
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Limitations: 

 

It is important to note that accuracy is calculated using the only testing data provided. With a 

total of 100 tricks performed, only 20% of it is used as testing data, and so the model is only 

tested 20 times. This means the accuracy achieved cannot be concluded with absolute certainty, 

and more testing data will be needed to provide a more accurate result. 

 

Secondly, all data collection, training and testing data, is performed by myself. Model 

performance will fit my own skateboarding movements more than others. To facilitate 

skateboarding contests and trick detection, data collection must be performed by more than one 

skater to avoid overfitting.  

 

In the future, other hyperparameters, such as regularization parameter and kernel coefficient for 

SVMs, can be investigated to provide a better comparison between both machine learning 

algorithms. Additionally, classification of skateboarding tricks can be extended into other 

machine learning algorithms such as neural networks and decision trees.  
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Appendix 

 
Appendix A - Data of a instance of trick 

The following contains a single instance of a trick being performed. Total data is too large to be 
displayed, so only one performance is shown. 
 
Ollie - 
https://docs.google.com/spreadsheets/d/15xpiXoEB-YMA8Ygsi2SYR4b8pS-e6i2LBaRCXOHON
5w/edit?usp=sharing 
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https://docs.google.com/spreadsheets/d/15xpiXoEB-YMA8Ygsi2SYR4b8pS-e6i2LBaRCXOHON5w/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15xpiXoEB-YMA8Ygsi2SYR4b8pS-e6i2LBaRCXOHON5w/edit?usp=sharing


 

 
 
Frontside 180 - 
https://docs.google.com/spreadsheets/d/1mAQFfieMJW8SlHpaIx2bLNWI8ZibhKG8VFbAa9fSZ
eQ/edit?usp=sharing 
 

 
Backside 180 - 
https://docs.google.com/spreadsheets/d/1A85uMwd2We2f2g5wGmQiAIM-B8_V4JsfpqfSzEflmH
4/edit?usp=sharing 
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https://docs.google.com/spreadsheets/d/1mAQFfieMJW8SlHpaIx2bLNWI8ZibhKG8VFbAa9fSZeQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mAQFfieMJW8SlHpaIx2bLNWI8ZibhKG8VFbAa9fSZeQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1A85uMwd2We2f2g5wGmQiAIM-B8_V4JsfpqfSzEflmH4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1A85uMwd2We2f2g5wGmQiAIM-B8_V4JsfpqfSzEflmH4/edit?usp=sharing


 

 
Pop shuvit - 
https://docs.google.com/spreadsheets/d/1X_nxq9og-ahLzXiLbfXeCeSBDPuJHlPR1R_lc_mqiyY
/edit?usp=sharing 
 

 
 
Kickflip - 
https://docs.google.com/spreadsheets/d/1Im7QFJS1aNVuyOpc720lebojmgKJzqEtQ9BiNoTFC6
E/edit?usp=sharing 
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https://docs.google.com/spreadsheets/d/1X_nxq9og-ahLzXiLbfXeCeSBDPuJHlPR1R_lc_mqiyY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X_nxq9og-ahLzXiLbfXeCeSBDPuJHlPR1R_lc_mqiyY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Im7QFJS1aNVuyOpc720lebojmgKJzqEtQ9BiNoTFC6E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Im7QFJS1aNVuyOpc720lebojmgKJzqEtQ9BiNoTFC6E/edit?usp=sharing


 

Appendix B - MatLab code for data processing 

%Read in collected data 

clear 

clc 

Ollie=readmatrix("Ollie.csv"); 

Frontside180=readmatrix("frontside180.csv"); 

Backside180=readmatrix("backside180.csv"); 

PopShuvit=readmatrix("popshuvit.csv"); 

Kickflip=readmatrix("kickflip.csv"); 

% save into one matrix 

save Final 

%% 

%load matrix 

load('Final.mat') 

%obtain labels 

TrainData=[]; 

for Act=1:1:5 

switch Act 

case 1 

A=Ollie(:,10);TrainData=[TrainData;DataProcessing(A,"Ollie")]; 

case 2 
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A=Frontside180(:,10);TrainData=[TrainData;DataProcessing(A,"Frontside180")]; 

case 3 

A=Backside180(:,10);TrainData=[TrainData;DataProcessing(A,"Backside180")]; 

case 4 

A=PopShuvit(:,10);TrainData=[TrainData;DataProcessing(A,"PopShuvit")]; 

case 5 

A=Kickflip(:,10);TrainData=[TrainData;DataProcessing(A,"Kickflip")]; 

otherwise 

disp('other value') 

end 

end 

input=TrainData(:,1:end-1); 

output=TrainData(:,end); 

input = str2double(input) 

clc 

%% 

%% 

%Data processing and segmentation function 

%Din = Segmented action data frames and labels 

function Din=DataProcessing(A,act) 

%normalization 

[A, ~]=mapminmax(A'); 
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A=A'; 

%Start EMA filter 

beta=0.95; 

AA=zeros(length(A),1); 

AA(1)=A(1); 

for i=1:length(A) 

if i==1 

AA(i)=A(i); 

else 

AA(i)=beta*AA(i-1)+(1-beta)*A(i); 

end 

end 

B=(A-AA); 

d=25; 

E=zeros(length(A)-d,1); 

for i=d+1:length(A) 

E(i-d)=sum(B(i-d:i));  

end 

beta2=0.96; 

EE=zeros(length(E),1); 

EE(1)=E(1); 

for i=1:length(E) 
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if i==1 

EE(i)=E(i); 

else 

EE(i)=beta2*EE(i-1)+(1-beta2)*E(i); 

End 

End 

Gate=1.5; %threshold value 

Index=[];%Stores value before threshold 

Value=[]; %Stores value after threshold 

Midval=[]; % middle value 

Flag=false; 

for i=1:length(EE) 

if EE(i)>=Gate && Flag==false 

Flag=true; 

index1=i; 

val1=EE(i); 

elseif EE(i)<Gate && Flag==true 

Flag=false; 

index2=i; 

val2=EE(i); 

Index=[Index;index1,index2]; 

Value=[Value;val1,val2]; 
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Midval=[Midval,floor((index1+index2)/2)]; 

end 

end 

end 
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